Table I. Some Common Methods of Computational Thermochemistry ^a

Method	Applicability		Cost			$Reliability^{ m b}$	
	Type	Size	Software	Computer	Personnel	<i>Accuracy</i> ^c	$Precision^{d}$
empirical (e.g., Benson groups)	common organic	any	\$	¢	\$	A-	B+
molecular mechanics (e.g., MM3)	common organic	100,000 atoms	\$	¢¢¢	\$\$	A-	В
semiempirical MO theory (e.g., MNDO/d)	organic, some inorganic	500 atoms	\$	\$	\$\$	C+	C-
density functional theory (e.g., B3LYP)	alle	50 atoms ^f	\$\$\$	\$\$	\$\$\$	В-	C+
CBS-4 (MO theory)	alle	20 atoms ^f	\$\$\$	\$\$\$	\$\$\$	В	B-
BAC-MP4 (corr. MO theory)	organic, some inorganic	20 atoms ^f	\$\$\$	\$\$\$	\$\$\$\$	B+	В
PCI-80 (corr. MO theory)	alle	20 atoms ^f	\$\$\$	\$\$\$	\$\$\$\$	B+	B-
G2 (MO theory)	alle	6 heavies ^f	\$\$\$	\$\$\$\$	\$\$\$	A-	В
CCSD(T) with basis set extrapolation (MO theory)	all ^e	3 heavies ^f	\$\$\$	\$\$\$\$\$\$	\$\$\$\$	A	A-

^a The opinions in this Table are those of the authors and do not necessarily represent those of the authors of other chapters in this book.

^b DFT methods are more robust than MO methods for molecules that contain transition metals, although both are less accurate for transition-metal species than for organics.

^c Typical performance for a large set of molecules (i.e., mean error).

^d Worst-case performance among a large set of molecules (i.e., largest error).

^e Subject to availability of basis sets.

^f Light atoms add less than heavy atoms to the computational expense; "heavy" means lithium or heavier.